Venkateshwar Hospital coming soon with stand alone cancer centre

Dr. Sunil Kr. Gupta Director & HOD, Medical & Haemato Oncologist, BMT Venkateshwar Cancer Hospital, Delhi

Case discussion

YYYYYYYYY

ŶŶ<u></u>ĹŶŶĹŶŶŶŶ ĂŶŶĹŶŶĹŶĹŶĹŶ ŶŶĹŶŶĹŶŶĬŶ ĹŶŶĹŶŶĹŶĹ

ŶŶĹŶŶĹŶŶŶ ĂŶŶĹŶŶĹŶĹŶ ŶŶĹŶŶĹŶĬŶ ĹŶŶĹŶŶĹŶĹŶ

MET ex14 mut

Molecular

~ 3% NSCLC

15% co-occurring MET amp wt, 56.2%

<1% NSCLC

- ~ 10% resist. mechanism in EGFR
- ~ 15% resist. mechanism in ALK

Pathology

Clinical

Histology:

Female

Poor survival

Adenocarcinoma, sarcomatoid, squamous, adenosquamous, ...

Smokers; also in never smokers

High PD-L1; low-TMB

Median age ~ 70 yrs

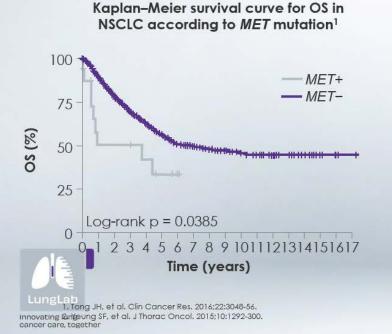
- Histology:
- <u>Adenocarcinoma</u>, squamous, others...
- High PD-L1; low-TMB
- Median age ~ 60 yrs
- Smokers
- Male
- Poor survival

Tong et al, Clin Cancer Res 2016; Award et al, J Clin Oncol 2016 Lee et al, J Thorac Oncol 2017, Schorock et al, J Thorac Oncol 2016; Carcereny et al, WCLC 2019; Clavé et al, ESMO 2019

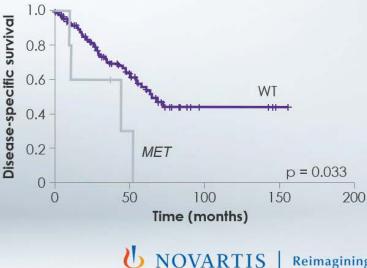
PRESENTED AT: 2020ASCO

.

.


-

#ASCO20 Sildes are the property of the a permission required for reuse.


PRESENTED BY: Laura Mezquita, MD, PhD

METex14 is associated with worse survival

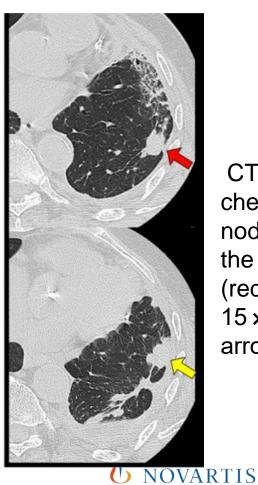
*MET*ex14 was found to be an independent prognostic factor that predicted worse survival compared with patients without *MET* mutation^{1,2}

Kaplan–Meier survival curve for OS in lung adenocarcinoma according to *MET* mutation²

Reimagining Medicine

 Neurotrophic tyrosine receptor kinase (NTRK) gene fusions are oncogenic drivers in a wide variety of adult and paediatric solid tumours.- The frequency of NTRK gene fusions in non-small cell lung cancer is estimated to be 0.1-1.0%.

Case presentation


- 60-year-old Asian female
- No smoking history
- Presented with a persistent cough
- Left lung mass was found on chest X-ray
- Biopsy was consistent with NSCLC, adenocarcinoma
- Brain MRI revealed multiple lesions
- Abdominal CT shows an adrenal gland metastasis (left) and an asymptomatic bone lesion in the pelvis (Os Sacrum; 1 cm)

MRI, magnetic resonance imaging.

Chest X-ray showing a dull left costophrenic angle and decrease in left lung volume.

CT scan of the chest showing nodular lesions in the left lower lobe (red arrow, 15×15 mm; yellow arrow, 20 x 15 mm)

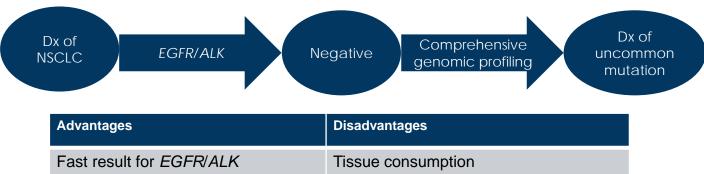
Reimagining Medicine

NONPROMODECK/Cmet Case discussion /ONCO//IN2008134146 /13/aug /2020

According to your hospital procedure, would this patient be tested for oncogenic drivers?

A. Yes

- B. No, treatment with chemotherapy would be started
- C. No, treatment with immune checkpoint inhibitors would be started
- D. No, treatment with chemotherapy and immune checkpoint inhibitors would be started



According to your hospital procedure, <u>when</u> would this patient be tested for oncogenic drivers?

- A. Upfront
- B. At progression
- C. The patient will not be tested for oncogenic drivers

Indirect path

Cost saving for the significant portion of patients with *EGFR/ALK* mutations Patient may likely proceed with chemo/immunotherapy first while waiting for comprehensive genomic profiling. Targeted therapy is likely to be reserved as 2nd-line therapy

- Image courtesy of Tony Mok.
- Chemo, chemotherapy; Dx, diagnosis.

Direct path

Dx of NSCLC

Comprehensive genomic profiling

Dx of uncommon mutation

UNOVARTIS | Reimagining Medicine

Advantages	Disadvantages
Assures sufficient tissue for comprehensive genomic profiling	Costly
Assures availability of molecular information (including the uncommon mutation) for 1st-line treatment	Delays treatment for patients with <i>EGFR/ALK</i> mutations

Image courtesy of Tony Mok.

If your hospital procedure recommends this patient to be tested, which biomarkers would they be tested for?

- A. None, they would be started on chemotherapy/immunotherapy
- B. Only the most common oncogenic drivers, such as *EGFR* and *ALK*, *and PD-L1*
- C. Broad molecular testing using a multiplex assay would be used to test for all/most known oncogenic drivers
- D. Initial testing for *EGFR, ALK, and PD-L1*, followed by broad molecular testing if these results are negative

- ALK, anaplastic lymphoma kinase; EGFR, epidermal growth factor receptor;
- PD-L1, programed death-ligand 1.

Case presentation

Diagnosis:

Broad molecular testing of a tissue biopsy revealed that the patient had **METex14 NSCLC**.

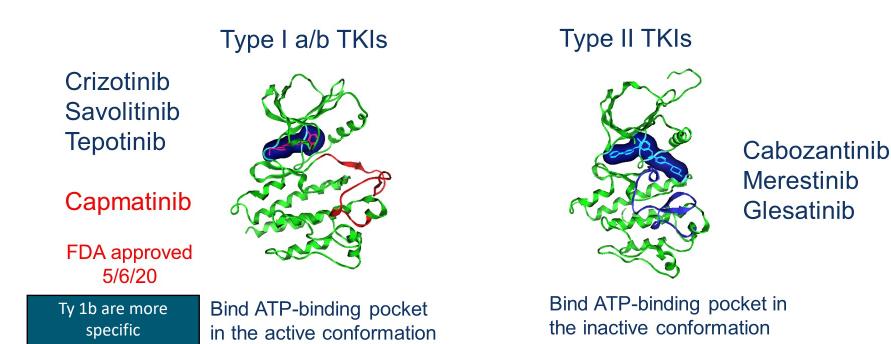
PDL1 Expression >50%

Based on your current practice, would you have correctly diagnosed this patient?

A. Yes

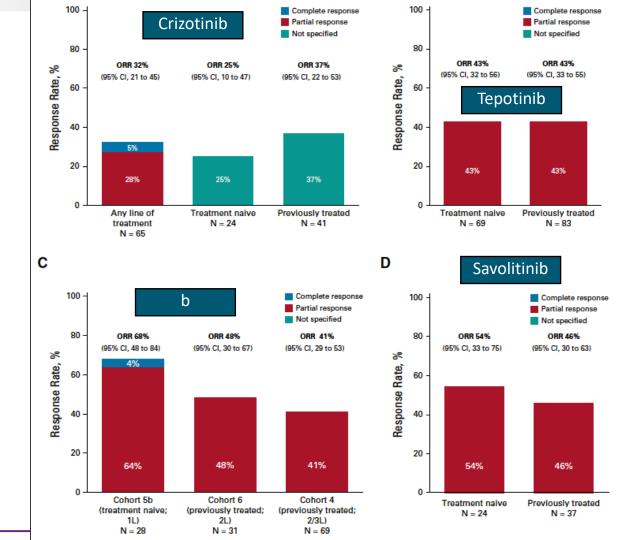
B. No

• *MET*ex14, *MET* exon 14 skipping mutation.


Question : If you had started on Chemotherapy before the arrival of NGS reports , what would you do now ?

- 1. Change to single agent IO
- 2. IO plus chemo
- 3. MET inhibitor
- 4. Continue same

Question : If MET inhibitor, Which one would you prefer ?


- 1. Capmatinib
- 2. Tepotininb
- 3. Savolitinib
- 4. Crizotinib

Classification of MET Tyrosine Kinase Inhibitors

Ty 3: Allosteric inhibition - Tivantinib

Awad IASLC TTL 2020

l vs ll line?

Key efficacy outcomes by BIRC : ASCO 2021 update

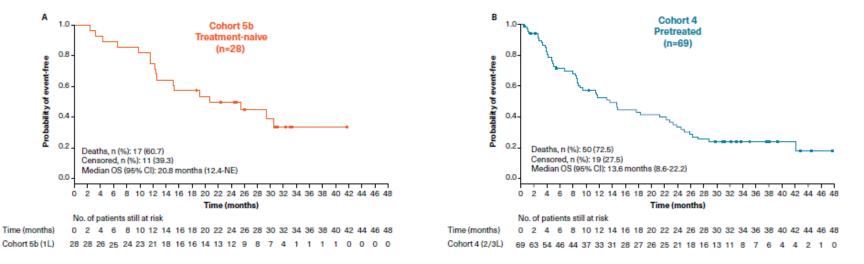
- In the preliminary analysis of treatment-naive patients in Cohort 7, the overall response rate (ORR) was 65.6% (21 partial responses) which was in line with the previously reported ORR of 67.9% for Cohort 5b (Table 2)¹
- In pretreated patients, ORR was 51.6% in second-line treatment (2L) and 40.6% in second- or third-line treatment (2/3L)

		Treatment-naive			Pre-treated	
	Cohort 5b N=28	Cohort 7 N=32	All patients N=60	Cohort 4 (2/3L) N=69	Cohort 6 (2L) N=31	All patients N=100
Best overall response, n (%)						
Complete response	1 (3.6)	0	1 (1.7)	0	0	0
Partial response	18 (64.3)	21 (65.6)	39 (65.0)	28 (40.6)	16 (51.6)	44 (44.0)
Stable disease	7 (25.0)	11 (34.4)	18 (30.0)	25 (36.2)	11 (35.5)	36 (36.0)
Non-complete response/ non-progressive disease	1 (3.6)	0	1 (1.7)	1 (1.4)	1 (3.2)	2 (2.0)
Progressive disease	1 (3.6)	0	1 (1.7)	6 (8.7)	0	6 (6.0)
Not evaluable ^a	0	0	0	9 (13.0)	3 (9.7)	12 (12.0)
ORR, ^b % (95% CI)	67.9 (47.6-84.1)	65.6 (46.8-81.4)	66.7 (53.3-78.3)	40.6 (28.9-53.1)	51.6 (33.1-69.8)	44.0 (34.1-54.3)

^a Unknown as per RECIST 1.1, ie, not qualified for confirmed complete response or partial response and without stable disease after more than 6 weeks or progression within the first 12 weeks. ^bORR: Patients who achieved complete or partial response. ^cDCR: Patients who achieved complete response, partial response, stable disease or non-complete response/non-progressive disease. 2/3L, second-/third-line treatment: BIRC, Blinded Independent Review Committee:: METex14, MET exon 14 skipping mutation. Wolf J. et al. N Engl J Med. 2020;383:944-957 NOVARTIS

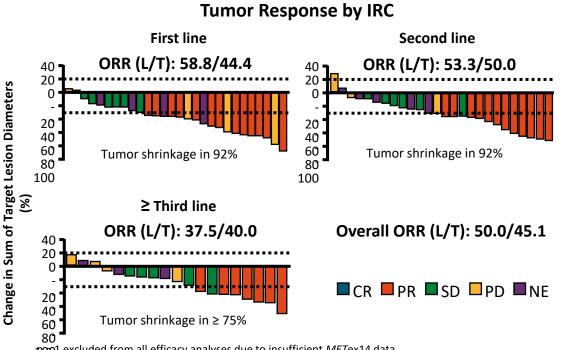
ASCO 2021 updated efficacy

• Median progression-free survival (PFS) for Cohorts 5b, 4, and 6 has been reported previously.¹ Although not mature at the data cutoff date, the median PFS for treatment-naive patients in Cohort 7 was 10.8 months


	Treatment-naive			Pre-treated		
	Cohort 5b N=28	Cohort 7 N=32	All patients N=60	Cohort 4 (2/3L) N=69	Cohort 6 (2L) N=31	All patients N=100
DCR, ^c % (95% CI)	96.4 (81.7-99.9)	100.0 (89.1-100.0)	98.3 (91.1-100.0)	78.3 (66.7-87.3)	90.3 (74.2-98.0)	82.0 (73.1-89.0)
DOR events,d n (%)	12 (63.2)	5 (23.8)	17 (42.5)	23 (82.1)	11 (68.8)	34 (77.3)
Median DOR, months (95% CI)	12.6 (5.6-NE)	NE (5.5-NE)	12.6 (8.4-NE)	9.7 (5.6-13.0)	8.4 (4.2-NE)	9.7 (5.6-13.0)
PFS events, n (%)	18 (64.3)	14 (43.8)	32 (53.3)	60 (87.0)	22 (71.0)	82 (82.0)
Median PFS, months (95% CI)	12.4 (8.2-23.4)	10.8 (6.9-NE)	12.3 (8.2-21.6)	5.4 (4.2-7.00)	6.9 (4.2-13.3)	5.5 (4.2-8.1)

^dFor DOR calculations, the total number of responders (patients with confirmed complete or partial responses) as assessed by BIRC was used for percentage calculation: 19 responders in Cohort 5b, 21 responders in Cohort 7, 28 responders in Cohort 4, and 16 responders in Cohort 6

2/3L, second-/third-line treatment; BIRC, Blinded Independent Review Committee; CI, confidence interval; DCR, disease control rate; DOR, duration of response; *MET*ex14, *MET* exon 14 skipping mutation; NE, not estimated; ORR, overall response rate; PFS, progression-free survival Wolf J, et al. N Engl J Med. 2020;383:944-957


Median overall survival

Median overall survival (OS) for treatment-naive patients from Cohort 5b was 20.8 months (95% confidence interval [CI], 12.4-NE) and 13.6 months (95% CI, 8.6-22.2) for pretreated patients in Cohort 4. Median OS for Cohorts 6 and 7 is not yet mature

1L/2L/3L, first-/second-/third-line treatment; CI, confidence interval; METex14, MET exon 14 skipping mutation; NE, not estimated; NSCLC, non-small cell lung cancer; OS, overall survival

Phase II VISION: Efficacy With Tepotinib in METex14 Mutation-Positive NSCLC

1001 excluded from all efficacy analyses due to insufficient *MET*ex14 data. Patients excluded due to unavailable measurements: first line 5/8; second line 4/5; \geq third line 4/3. Durability of response

- Overall DoR (n = 86): 14.3 mos

- By L biopsy (n = 48): 12.4 mos

- By T biopsy (n = 51): 15.7 mos

– PFS:

- By L biopsy (n = 57): 9.5 mos

- By T biopsy (n = 58): 10.8 mos

 Both patients with and without CNS mets achieved benefit from treatment

Intracranial efficacy in GEOMETRY mono-1 and systemic efficacy in VISION in patients with *MET*ex14 NSCLC and brain metastases

Capmatinib: GEOMETRY mono-1^{1,2} Intracranial efficacy in patients with BM at baseline

- 13 evaluable patients with BM at baseline by BIRC (mean 3.3 lesions per patient [range 1–8])
- 54% (N = 7/13) had an intracranial response^a
 - 4 patients had complete resolution of all brain lesions
 - Of the remaining 3 patients
 - 1 had complete resolution in 3 lesions, stabilization in 4 lesions
 - 1 had complete resolution in 2 lesions, stabilization in 1 lesion
 - 1 had complete resolution in 1 lesion, stabilization in 3 lesions
- Intracranial disease control was achieved in 1 2/13 patients

^aAll responses were confirmed at next staging.

1. Garon EB, et al. Presentation at AACR 2020; abstract CT082.

- 2. Wolf J, et al. N Engl J Med. 2020;383:944-57.
- 3. Paik PK, et al. N Engl J Med. 2020;383:931-43.

4. Viteri S, et al. Ann Oncol. 2020;31(suppl_4):S754-S840;abstract 1286P.

Tepotinib: VISION^{3,4} Systemic efficacy in patients with BM at baseline

• At baseline, 23 patients (15%) had brain metastases (lesions identified according to RECIST v1.1).

Best objective response in patients with brain metastases

Objective response (IRC)	Patients with brain metastases* (n=23)
Best objective response Complete response Partial response Stable disease Progressive disease Not evaluable	0 11 (47.8) 6 (26.1) 4 (17.4) 2 (8.7)
Objective response rate, % (95% CI)	47.8 (26.8, 69.4)
Disease control rate, % (95% CI)	73.9 (51.6, 89.8)

UNOVARTIS

Reimagining Medicine

What are the barriers to current testing processes for newly diagnosed advanced NSCLC patients in your practice?

- A. Insufficient tumor tissue and/or low sample quality
- B. Non-availability of appropriate testing methodology
- C. Long turnaround time to perform comprehensive biomarker testing
- D. Low awareness of adequate biomarker testing
- E. Inadequate technical expertise within my hospital
- F. Inadequate reimbursement to cover all relevant biomarkers

Detecting METex14: RNA- vs DNA-based methods

RNA-based	DNA-based	
Direct approach to detect <i>MET</i> ex14; always the same event on an RNA level	Diverse events (variable in size and position) on a DNA level that lead to exon 14 skipping	RNA-based NGS platform: Analyzes the direct result of altered splicing (fusion of exons 13 and 15)
RT-PCR or RNA-sequencing	DNA-sequencing should cover all regions involved in splicing (the branch site, polypyrimidine tract, splice acceptor, and donor site of <i>MET</i> exon 14)	Signal generated when exons 13 and 15 fuse DNA-based NGS platform: Analyzes the genomic variant that alters or eliminates a splicing site Point mutations
Not all labs are routinely performing RNA analysis	Labs are routinely performing DNA analysis	DNA Exon 13 Intron Exon 14 Exon 15

Innovating lung cancer care, together In what scenarios will you evaluate the option of Liquid biopsy for METex14 skipping mutation detection ?

Comparison of efficacy outcomes for METex14-positive patients identified by NGS-based liquid biopsy vs Clinical Trial Assay

	METex	14 LDx	METex14 CTA		
	Cohort 5b Treatment-naïve (N=16)	Cohort 4 Pre-treated (N=41)	Cohort 5b Treatment-naïve (N=28)	Cohort 4 Pre-treated (N=69)	
Best overall response by BIRC, n (%)					
CR	1 (6.3)	0 (0)	1 (3.6)	0 (0)	
PR	12 (75.0)	20 (48.8)	18 (64.3)	28 (40.6)	
SD	3 (18.8)	12 (29.3)	7 (25.0)	25 (36.2)	
PD	0 (0)	5 (12.2)	1 (3.6)	6 (8.7)	
Unknown	0 (0)	4 (9.8)	0 (0)	9 (13.0)	
ORRª, % (95% CI)	81.3 (54.4–96.0)	48.8 (32.9–64.9)	67.9 (47.6–84.1)	40.6 (28.9–53.1)	
Median DOR by BIRC ^ь , months (95% CI)	20.3 (4.2–NE)	9.8 (4.2–19.5)	12.6 (5.6–NE)	9.7 (5.6–13.0)	
Median PFS, months, (95% CI)	12.4 (4.5–NE)	5.4 (4.0–6.6)	12.4 (8.2–23.4)	5.4 (4.2–7.00)	
Median OS, months (95% CI)	17.9 (9.8–NE)	13.6 (6.6–23.3)	20.8 (12.4–NE)	13.6 (8.6–22.2)	

^aORR was defined as the proportion of patients with a best overall response of CR or PR. ^bDOR is based on the subset of patients with confirmed CR or PR (*MET*ex14 LDx: cohort 5b, n=13; cohort 4, n=20; METex14 CTA: cohort 5b, n=19; cohort 4, n=28).

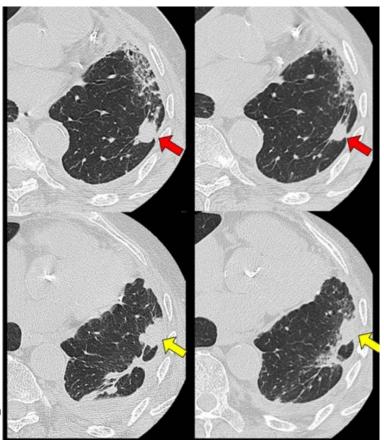
BIRC, blinded independent review committee; CTA, clinical trial assay; CR, complete response; DoR, duration of response; LDx, NGE based liquid biopsy assay; METex14, MET exon 14 skipping mutation; N, number per group; PD, progressive disease; PR, partial response; SD, stable disease.

MET Inhibitor Safety Overview

TRAEs With Capmatinib,* n (%)	All Patients (N = 334)		
	Any Grade	Grade 3/4	
Any	282 (84.4)	119 (35.6)	
Peripheral edema	139 (41.6)	25 (7.5)	
Nausea ⁺	111 (33.2)	6 (1.8)	
Creatinine increased [‡]	65 (19.5)	0	
Vomiting ⁺	63 (18.9)	6 (1.8)	
Fatigue	46 (13.8)	10 (3.0)	
Appetite decreased ⁺	42 (12.6)	3 (0.9)	
Diarrhea	38 (11.4)	1 (0.3)	

* \geq 10% of patients. [†]Capmatinib administered in fasting conditions at the time, a restriction that has since been removed. [‡]Known to inhibit creatinine transporters.

TRAEs With Tepotinib,* n (%)	All Patients (N = 87)		
	Any Grade	Grade 3	
Any	71 (81.6)	17 (19.5)	
Peripheral edema	42 (48.3)	7 (8.0)	
Nausea	20 (23.0)	0	
Diarrhea	18 (20.7)	1 (1.1)	
Creatinine increased	11 (12.6)	0	
Asthenia	8 (9.2)	1 (1.1)	
Amylase increased	7 (8.0)	2 (2.3)	
ALT increased	6 (6.9)	2 (2.3)	
AST increased	5 (5.7)	1 (1.1)	
Hypoalbuminemia	5 (5.7)	0	


*≥ 5 of patients.

Case cont.

- Patient was started on Tab Capmatinib 400mg BD through access program in July 2020
- Patient suffered from grade 1 rash, grade 1 fatigue and grade 2 peripheral edema, dose reduced to 300mg BD
- Treatment continued for 6 months

Follow up scan – 3 months post Capmatinib

NONPROMOD /13/aug /2020 Disease status – stable

CT scan of the chest showing nodular lesions in the left lower lobe (red arrow, 15×15 mm; yellow arrow, 20×15 mm) pre and post Capmatinib

Target lesions (red arrow, 11×11 mm; yellow arrow, 14×12 mm) decreased from baseline

Choice of immunotherapy

- How would you have treated these patients if PDL1 was >50% ?
- Would you consider using Immuno/immunochemo agents in 1st line for BRAFm+ / cMET ex14 skipping lesion in NSCLC?

*MET*ex14 NSCLC is associated with poor response to chemotherapy, immunotherapy, and other therapies

Retrospective study of chemotherapy in patients with stage IIIB/IV NSCLC

	1L (n = 43,551)	2L (n = 4,318)
ORR, %	26.4	6.8
Median OS, months	8.5	6.6

 Response to 1L chemotherapy in advanced NSCLC is generally short, and ORR with 2L chemotherapy is lower¹ Retrospective study of immunotherapy in patients with METex14 NSCLC²

	1L/2L/3L (N = 147)
ORR, %	17.0
Median PFS, months	1.9

- ORR with immunotherapy was
 poor
- PD-L1 expression levels or TMB did not correlate with the response to immunotherapy²
- TMB was lower in *MET*ex14 NSCLC vs non-selected NSCLC²

Study of crizotinib^b in patients with advanced *MET*ex14 NSCLC³

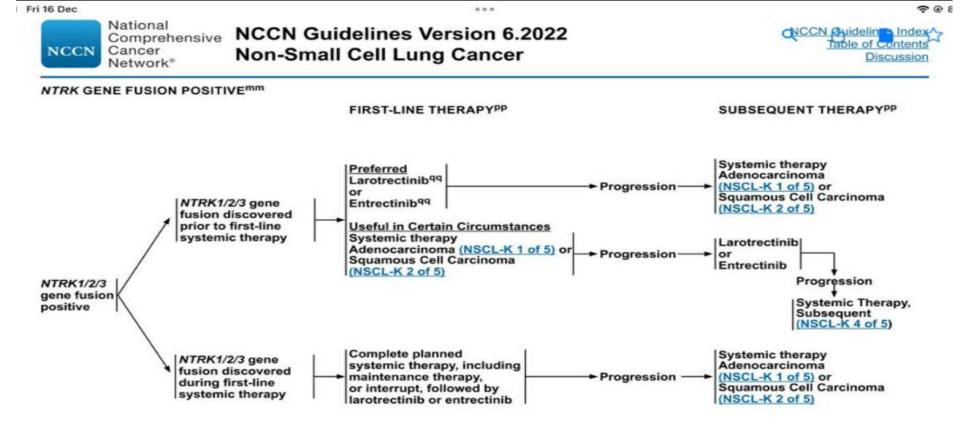
	≥ 1L (N = 69)
ORR, %	32.0
Median PFS, months	7.3

 Crizotinib^b provided a suboptimal benefit for patients with advanced METex14 NSCLC³

^a Anti-PD-1/-PD-L1/-CTLA-4.

^b Crizotinib is not an approved therapy for METex14 NSCLC.

1. Hotta K, et al. J Thorac Oncol. 2007;2:402-7. 2. Sabari JK, et al. Ann Oncol. 2018;29:2085-91. 3. Drilon A, et al. Nat Med. 2020;26:47-51. 1L/2L/3L, first/second/third line; ORR, objective response rate; PD-L1, programmed death-ligand 1; TMB, tumor mutational burden.

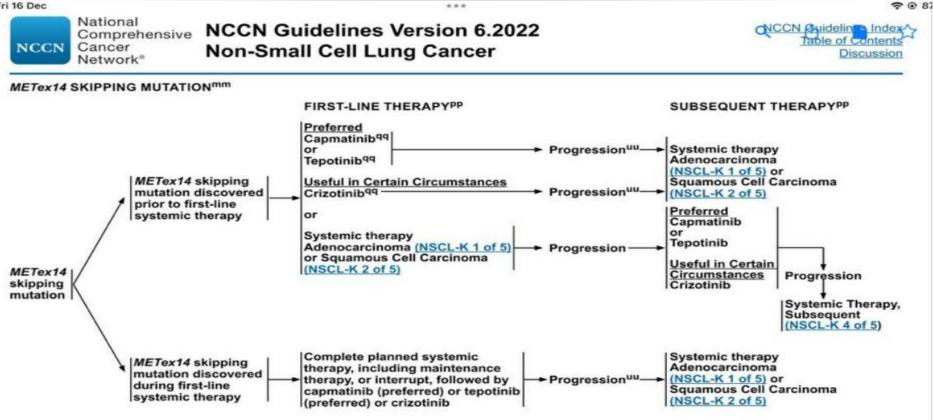


Is it important to include METex14 in the broad molecular testing panel for patients with NSCLC? (cont.)

- Test for EGFR, ALK, ROS1, BRAF V600E, NTRK, RET, and METex14 in all nonsquamous NSCLC^[3]
 - Use broad NGS testing to detect most mutations using least amount of tissue
 - For squamous NSCLC, consider testing in young, never/light smokers or if biopsy specimen is of mixed histology
- Accurate detection of METex14 requires a well-designed approach to cover the diverse genomic events varying in size and position that lead to exon 14 skipping
- Capmatinib has demonstrated clinically meaningful efficacy in advanced NSCLC patients harboring METΔex14 mutations.
- Wait for results of NGS before acting on PD-L1 results

^{1.} Masters. JCO. 2015;33:3488. 2. Mukhopadhyay. Am J Surg Pathol. 2011;35:15.

^{3.} Pennell. ASCO Educ Book. 2019;39:351. 4. Lindeman. J Thorac Oncol. 2018;13:323.


| Note: All recommendations are category 2A unless otherwise indicated.

mm Principles of Molecular and Biomarker Analysis (NSCL-H).

PP Molecular or Biomarker-Directed Therapy for Advanced or Metastatic Disease (NSCL-J).

qq For performance status 0-4.

mm Principles of Molecular and Biomarker Analysis (NSCL-H).

PP Molecular or Biomarker-Directed Therapy for Advanced or Metastatic Disease (NSCL-J).

99 For performance status 0-4.

298

^{uu} Beware of flare phenomenon in subset of patients who discontinue TKI. If disease flare occurs, restart TKI.

Note: All recommendations are estance: 25 unless otherwise indicated

YYYYYYYYY **XXXXXXXXXX** YYXYYXYYY LYYLYYLYLY **TTTTTTT XXXXXXXXXX** YYXYYXYYY **YXXYXXXXX XXXXXXXXXX YXXYXXXXX** YYYYYYYYY **XXXXXXXXXX TTTTTTT YXXYXXXXX YYXYYXYYY XXXXXXXXXX** YYXYXXYYY **XXXXXXXXXX** YYXYYXYYY YXXYXXXYYY YYYYYYYYY YXXYXXXYX YYXYXXYYY TAXYXXXXXX TAXYYXXXYY YYXYYXYYY **XXXXXXXXXX TTTTTTTT XXXXXXXXXX** YYXYYXYYY XXXXXXXXXXX **TTTTTTT YXXYXXXXX XXXXXXXXXX** YYXYYYYYY **YXXYXXXXX YXXYXXXXX** YYJYYJYYY JYYJYYJYJY YYJYYJYYY **YYYYYYYY** YYYYYYYYY

Thank you